Home » » Jumlah Sampel dalam Pemodelan Persamaan Struktural (SEM)

Jumlah Sampel dalam Pemodelan Persamaan Struktural (SEM)

Written By Unknown on Friday, February 1, 2013 | 10:30 PM

Tanaka (1987) megajukan 2 pendekatan yang dapat dijadikan pertimbangan untuk mengatasi masalah kecukupan ukuran sampel dalam pemodelan melalui SEM. Pendekatan pertama mempertimbangkan ukuran sampel berdasarkan ketepatan estimasi dan efek ukuran sampel yang telah ditemukan jawabannya oleh peneliti melalui studi Monte Carlo. Meski hasilnya beberapa masih bertentangan namun kesepakatan umum dapat diidentifikasi. Jadi, kesesuaian ukuran sampel sangat terkait dengan bentuk model yang akan diestimasi. 50 pengamatan/kasus/sampel menurut Tanaka cukup untuk menguji model variabel laten tunggal yang memiliki empat indikator tampak. Jumlah ini tidak cukup ketika diterapkan pada model yang memiliki 20 variabel ukur dengan 4 variabel laten.

Intinya, ketepatan ukuran sampel terkait dengan jumlah parameter diperkirakan di dalam model. Informasi mengenai jumlah estimasi parameter dapat kita lihat pada sebagian besar program pemodelan SEM. Menurut pengalaman saya, pada program AMOS ada di menu identitas model sedangkan LISREL pada menu rangkuman. Di sisi lain kompleksitas metode estimasi menentukan kesesuaian ukuran sampel. Perkembangan terbaru pemodelan SEM yang mengembangkan model dengan sedikit asumptions tentang distribusi data dan memungkinkan data tidak normal, membutuhkan ukuran sampel yang sedikit lebih banyak dibanding dengan metode estimasi yang standar. Sayang sekali, Tanaka tidak menjelaskan berapa sampel yang dibutuhkan untuk menggunakan asumsi data tidak normal. Singkat kata, harga yang harus dibayar jika kita menggunakan asumsi yang lebih mudah dipenuhi adalah peningkatan ukuran sampel besar. Artinya, asumsi data yang tidak normal dapat dibayar dengan jumlah sampel yang besar.

Para ahli menyepakati konsensus bahwa bahwa ukuran sampel minimum tergantung pada banyak hal, misalnya teknik estimasi. Jika peneliti menggunakan teknik estimasi Asymptotically Distribution Free (ADF), sampel yang digunakan minimal 1000 (Hoogland dan Boomsma, 1998), bahkan ada yang mengatakan minimal 2000 (Boomsma dan Hoogland, 2001). Estimasi maximum likelihood (ML) juga membutuhkan ukuran sampel yang cukup, terutama bila data dipakai adalah non-normal. Berdasarkan studi Monte Carlo yang dilakukan oleh peneliti terhadap berbagai metode estimasi disimpulkan bahwa : (1) Ukuran sampel minimum yang diperlukan untuk mengurangi bias pada semua jenis estimasi SEM adalah 200 (Loehlin, 1998). (2) Ukuran sampel untuk estimasi ML harus minimal 15xjumlah variabel yang diamati (Stevens, 1996). (3) Ukuran sampel untuk estimasi ML harus setidaknya 5x jumlah parameter bebas dalam model, termasuk eror (Bentler & Chou, 1987). (4) Data yang memiliki nilai kurtosis tinggi, ukuran sampel minimum harus 10 kali jumlah parameter bebas (Hoogland dan Boomsma, 1998). Bootstrap merupakan alternatif untuk estimasi ML dengan sampel kecil.

McCall (1982) memperkenalkan sebuah rumus umum yang dapat digunakan untuk menentukan ukuran sampel ketika memperkirakan ukuran sampel yaitu n = (Zσ / e)^2. n adalah ukuran sampel yang dibutuhkan untuk tingkat presisi yang diinginkan, e adalah ukuran efek, Z adalah tingkat kepercayaan, dan σ deviasi standar suatu populasi (dapat diperkirakan dari studi penelitian sebelumnya, uji norma-norma, atau rentang skor dibagi dengan 6). Misalnya, diberi sampel acak dari skor ACT dari populasi didefinisikan dengan deviasi standar 100, tingkat kepercayaan yang diinginkan dari 1,96 (taraf signifikansi 0,05), dan pengaruh ukuran sebesar 20. Berdasarkan informasi di atas maka ukuran sampel yang dibutuhkan adalah [100 (1,96) / 20)] 2 = 96.

REFERENSI

Hoogland, J.J., Boomsma, A., 1998. Robustness studies in covariance structure modeling: an overview and a metaanalysis. Sociological Methods and Research 26, 329–333.
Boomsma, A., Hoogland, J.J., 2001. The robustness of LISREL modeling revisited. In: Cudeck, R., du Toit, S.,Sorbom, D. (Eds.), Structural Equation Modeling: Present and Future. Scientific Software International, Chicago, pp. 139–168.
Loehlin, J.C., 1998. Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis. Lawrence Erlbaum Associates, Mahwah, NJ.
Bentler, P.M., Chou, C.P., 1987. Practical issues in structural modeling. Sociological Methods and Research 16, 78– 117.
Tanaka, J. S. (1987). “How Big Is Big Enough?”: Sample Size and Goodness of Fit in Structural Equation Models with Latent Variables. Child Development, 58(1), 134-146.
Share this article :

Post a Comment

 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. AlfandyKaicili - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Blogger